Modeling of Resilient Systems in Non-monotonic Logic Application to Solar Power UAV

José Luis Vilchis Medina

December 12, 2018

Overview

1 Introduction

2 Non-monotonic Reasoning

3 Resilience

4 Practical Case

Resilience 00000000 Practical Case 0000 Conclusion 00000

Introduction

- Autonomous motor-glider,
- Different objectives
 - take-off,steady-flight,climb,turn,max. time flight, power management.....
- Contradiction rules
 - emergency, environment, short time to decide. . .
- Resilient system,
- Decision-Making

Non-monotonic Reasoning

Resilience 00000000 Practical Case 0000 Conclusion 00000

Controls

6 Informations : (1)Airspeed, (2) Horizon Artificial, (3) Altimeter, (4) Bank turn, (5) Compass, (6) Variometer

11 Actions :yoke-left, yoke-neutral1, yoke-right, yoke-up, yoke-neutral2, yoke-down, pedal-right, pedal-neutral, pedal-left, max motor, motor off

Non-monotonic Reasoning

Resilience

Practical Case 0000 Conclusion 00000

States flight

Non-monotonic Reasoning

Resilience

Practical Case 0000 Conclusion 00000

Traffic Pattern

{Takeoff, Climb, BankTurn, ..., Descend, Final Approach, Land}

Non-monotonic Reasoning

Resilience

Practical Case 0000 Conclusion 00000

Changing objetives

Non-monotonic Reasoning 0000000000000 Resilience 00000000 Practical Case 0000 Conclusion 00000

Knowledge Representation

Description in classical logic :

- $alt(down) \land var(stable) \rightarrow yoke(pull)$
- $motor(on) \land var(up) \rightarrow yoke(push)$
- $alt(high) \land var(stable) \rightarrow yoke(push)$
- motor(on) ∧ alt(down) → yoke(pull)
- \neg (yoke(push) \land yoke(pull))

Examples

 $F = \{alt(down), motor(on), var(up)\}$, we infer yoke(pull) and yoke(push), because of contradictory actions it is a contradiction.

Resilience 00000000 Practical Case 0000 Conclusion 00000

Example of exceptions

Rule 91.319

"Operate under VFR¹, day only, unless otherwise authorized"

in classical logic

 $VFR \land \neg authorized(x) \rightarrow \neg piloting(x)$ $VRF \land \neg authorized(x) \land \neg day \rightarrow \neg piloting(x)$

Rule 91.7

- "No person may operate an aircraft unless it is in an airworthy condition"
- "Pilot-In-Command is responsible for determining whether that aircraft is in condition for safe flight"

¹Visual Flight Rules

Non-monotonic Reasoning

Resilience 00000000 Practical Case 0000 Conclusion 00000

Example of contradiction

Rule 91

"The minimum over flight height will never be less than 500 feet"² This rule could be expressed in FOL, considering that x = airplane:

 $altitude(x) \rightarrow (x \ge 500)$

But when an airplane lands its altitude is less than 500 feet:

 $land(x) \rightarrow (x < 500)$

Some more:

$$emergency(x)
ightarrow land(x)$$
runway_obstacle $(x)
ightarrow
eglaland(x)$

²This altitude depends of the agglomeration.

Non-monotonic Reasoning

Resilience 00000000 Practical Case 0000 Conclusion 00000

Real scenario

Overview

1 Introduction

2 Non-monotonic Reasoning

3 Resilience

4 Practical Case

5 Conclusion

Non-monotonic Reasoning

Resilience 00000000 Practical Case 0000 Conclusion 00000

Non-monotonic Reasoning

- Monotony:
 - $A \vdash w$, then $A \bigcup B \vdash w$

(The validity of the original conclusion is not changed by the addition of premises) $\ensuremath{\mathsf{Example}}$

$$\forall y, aircraft(y) \rightarrow \neg floating(y)$$

But we know that some specials aircrafts float.

 $\forall y, aircraft(y) \land floatplane(y) \rightarrow \neg floating(y) ???$

Non-monotonic Reasoning

Resilience 00000000 Practical Case 0000 Conclusion 00000

Non-monotonic Logic

McCarthy(Circumscription), Reiter(Default logic), ...

- New information can invalide previous conclusions,
- Resolve contradictions,
- Reasoning about knowlegde
- Rational conclusions from partial information

Definition

"... we make assumptions about things jumping to the conclusions"

Non-monotonic Reasoning

Resilience 00000000 Practical Case 0000 Conclusion 00000

Default Logic [Reiter]

Definition

A default theory is a pair $\Delta = (D, W)$, where D is a set of defaults and W is a set of formulas in FOL.

- A default *d* is: $\frac{A(X):B(X)}{C(X)}$
- A(X), B(X), C(X) are well-formed formulas
- $X = (x_1, x_2, x_3, ..., x_n)$ is a vector of free variables(non-quantified).

Intuitively a default means, "if A(X) is true, and there is no evidence that B(X) might be false, then C(X) can be true".

With the use of B(X) we get a reorganization of the conclusions as a maximal consistent sets of formulas, called Extensions.

Non-monotonic Reasoning

Resilience 00000000 Practical Case 0000 Conclusion 00000

Default Logic [Reiter]

Definition

E is an extension of Δ iff:

- $E = \bigcup_{i=0}^{\infty} E_i$ with:
- $E_0 = W$ and
- for i > 0, $E_{i+1} = Th(E_i) \cup \{C(X) \mid \frac{A(X):B(X)}{C(X)} \in D$, $A(X) \in E_i \land \neg B(X) \notin E\}$

Property

If every default of D is normal : $\frac{A(X):B(X)}{B(X)}$

 $\neg B \not\in E$ is replaced by $\neg C \notin E_i$

If W is consistent, there is always $\underline{extensions}$ and greedy algorithm

Non-monotonic Reasoning

Resilience 00000000 Practical Case 0000 Conclusion 00000

Example

$$\begin{aligned} d_{1} &= \frac{\left((\textit{altitude}(x) \geq 500\right) \land \textit{roll}(x,\textit{stable})) : \textit{steady_flight}(x)}{\textit{steady_flight}(x)} \\ d_{2} &= \frac{\left((\textit{altitude}(x) < 500\right) \land \textit{roll}(x,\textit{stable})) : \textit{land}(x)}{\textit{land}(x)} \\ d_{3} &= \frac{\left(\textit{land}(x) \land \textit{obstacle}\right) : \textit{climb}(x)}{\textit{climb}(x)} \end{aligned}$$

Assuming the following information :

$$W = \{(alt(x) \le 500), roll(x, stable), obstacle\}$$

From $\Delta = (D, W)$, we calculate the set of extensions.

- $E_1 = W \cup land(x)$
- $E_2 = W \cup climb(x)$

Non-monotonic Reasoning

Resilience 00000000 Practical Case 0000 Conclusion 00000

Simulation

$$\begin{split} &W: \{glider(pitch_stable), glider(roll_stable), \neg glider(motor_on), \\ & glider(low_altitude), glider(low_airspeed)\}, \\ & D: \{d_1, d_2, d_3, \dots, d_{50}\}, (d_i = \frac{A(X):B(X)}{B(X)}) \end{split}$$

Non-monotonic Reasoning

Resilience

Practical Case 0000 Conclusion 00000

Simulation

Which extension to choose?

Conclusion

Decision-Making

- In decision theory, there is a opportunistic model,
- For each default (d) there is a weighting (p),
- Criterias such as legislation, risk, energy, ...

Definition

```
\forall E, min \{max (c_i) - c_j\}
```

Where c_i is the value of the criteria and c_j are the alternatives.

Non-monotonic Reasoning

Resilience

Practical Case 0000 Conclusion 00000

Decision-Making

For
$$E_n = \{d_2, d_3, d_4\}$$

Score				
Very low	Low	Medium	High	Very high
0	1	2	3	4

Alternatives	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃
<i>d</i> ₂	1	0	1
<i>d</i> ₃	4	2	4
d_4	3	2	3

Alternatives	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃	Decision
<i>d</i> ₂	3	2	3	3
<i>d</i> ₃	0	0	0	0
<i>d</i> ₄	1	0	1	1

Non-monotonic Reasoning

Resilience

Practical Case 0000 Conclusion 00000

Decision-Making

Alternatives	D		
E_1	<i>d</i> ₃	d7	d ₁₈
E_5	<i>d</i> ₂	<i>d</i> ₅	<i>d</i> ₁₀
E ₁₇	<i>d</i> ₇	<i>d</i> ₁₄	d ₂₀

The set of solutions :

 $E_n = \{ [x_{d1}, y_{d1}, z_{d1}], [x_{d2}, y_{d2}, z_{d2}], [x_{d3}, y_{d3}, z_{d3}], \cdots \}$

$$\frac{C1_n}{x_{d1}} + \frac{C2_n}{x_{d2}} + \frac{C3_n}{x_{d3}} + \dots \in |C1_n|$$

$$\frac{C1_n}{y_{d1}} + \frac{C2_n}{y_{d2}} + \frac{C3_n}{y_{d3}} + \dots \in |C2_n|$$

$$\frac{C1_n}{z_{d1}} + \frac{C2_n}{z_{d2}} + \frac{C3_n}{z_{d3}} + \dots \in |C3_n|$$

.

Non-monotonic Reasoning

Resilience 00000000 Practical Case 0000 Conclusion 00000

Decision-Making

Each E is associed with a set of ponderations:

$$E_{n} = \{ |C1_{n}|, |C2_{n}|, |C3_{n}|, \cdots \}, \\ E_{n-1} = \{ |C1_{n-1}|, |C2_{n-1}|, |C3_{n-1}|, \cdots \}, \\ E_{n-2} = \{ |C1_{n-2}|, |C2_{n-2}|, |C3_{n-2}|, \cdots \}...$$

Ext-Crit	<i>C</i> 1	C2	С3	• • •
En	X_n	Y_n	Zn	
E_{n-1}	X_{n-1}	Y_{n-1}	Z_{n-1}	•••
E_{n-2}	X_{n-2}	Y_{n-2}	Z_{n-2}	•••
:	:	:	:	•.
•	•	•		•

Applying "a posteriori" decision-making, we find E_n .

Overview

1 Introduction

2 Non-monotonic Reasoning

3 Resilience

4 Practical Case

5 Conclusion

Definition

Non-monotonic Reasoning

Resilience

Practical Case 0000 Conclusion 00000

In Ecology:

The property of a system to absorb and anticipate perturbations [Holling].

In Psychology:

An ability to successfully survive with adversity [APA]³.

In Engineering:

It ensures robustness and stability [Goerger, S.].

³American Psychological Association

Non-monotonic Reasoning

Resilience

Practical Case 0000 Conclusion 00000

Holling's Definition

The flow of events:

Exploration (β), Reorganization (α), Conservation (δ) and Release (γ).

Intuitively, the computation of Extensions corresponds to β , Decision-Making corresponds to α and δ , and interactions with environment is γ .

Non-monotonic Reasoning

Resilience

Practical Case 0000 Conclusion

Non-monotonic Model

Theorem

In the world **K**, there is always a resilience trajectory $R : \{\alpha, \beta, \gamma, \delta\}$. Where **S** are situations, **O** are objectives and **A** are actions.

 $\forall S, \forall O, \forall A \subseteq K \exists R$

Non-monotonic Reasoning

Resilience

Practical Case 0000 Conclusion 00000

Short and Long term Objectives

Short-term

When an airplane is placed at the start point (S_p) , assuming it has the authorization, and it is possible to take-off, then the plane take-off.

 $\frac{(rest(x) \land authorization) : takeoff(x)}{takeoff(x)}$

Long-term

When a plane (starts at some point a) wants to maintain an altitude greater than 1500 feet and a north direction, to reach to the point b

 $\frac{((alt(x) > 1500) \land compass(x, north)) : point(x, b)}{point(x, b)}$

Non-monotonic Reasoning

Resilience

Practical Case 0000 Conclusion 00000

Dynamics of Non-monotonic Resilience: Tentative Representation

Fonction of choice: $\Upsilon(f) : S \cap O \to O \cap A$

Conclusion 00000

Discrete Non-monotonic Resilience Model

Definition:

The convergence of an objective G is the sum of the product of the sub-objectives g and disturbances ζ .

$$\bigcup_{i=0}^{\infty} G_i = \bigcup_{i=0}^{\infty} g_i \cdot \zeta_i$$

 $R_{\star} = \{g_1, \zeta_1, g_6, \zeta_2, g_3, \zeta_3, g_6, \zeta_4, g_5, \zeta_5, g_4, \zeta_6, g_1, \ldots\} (\mathsf{left}) \\ R_{\Delta} = \{g_5, \zeta_1, g_4, \zeta_2, g_3, \zeta_3, g_6, \zeta_4, g_5, \zeta_5, g_4, \zeta_6, g_6, \ldots\} (\mathsf{right})$

Non-monotonic Reasoning

Resilience

Practical Case 0000 Conclusion 00000

Minsky's Model

Overview

1 Introduction

2 Non-monotonic Reasoning

3 Resilience

4 Practical Case

Non-monotonic Reasoning

Resilience

Practical Case

Conclusion 00000

Practical Case

Non-monotonic Reasoning

Resilience 00000000 Practical Case

Conclusion 00000

Complementary filter

$$angle_i = 0.98 * (angle_{i-1} + gyro * dt) + 0.02 * (acc)$$

on	Non-monotonic Reasoning	Resilience	Practical Case	Conclusion
00000	00000000000	0000000	0000	00000

Results

Introduct

Facts	Extensions	Instanced clauses	CPU	Lips
7	13	115	95%	114,131
5	13	113	98%	117,176
4	10	112	97%	130,098

Movie

Overview

1 Introduction

2 Non-monotonic Reasoning

3 Resilience

4 Practical Case

Resilience 00000000 Practical Case 0000 Conclusion

Conclusion

- Simulation of piloting behaviour,
- We tackled contradictory and incomplete information,
- Resilient model based on default logic,
- Logical approach of resilience, linked with the mathematical notions,
- Non-monotonic model in a embedded microcomputer, cpu running at 1 GHz ARM11 (single core), 512 Mb of RAM and power consummation of 0.8 Watts,
- Until now we have 100 defaults. Extensions are computed in milliseconds.

Non-monotonic Reasoning

Resilience 00000000 Practical Case 0000 Conclusion

Papers

- Autonomous Aerial Vehicle: Based on Non-Monotonic Logic, VEHITS'17
- Contrôle de Vol d'un Planeur Basé sur une Logique Non-monotone, APIA'17
- Non-monotonie et Resilience: Application au Pilotage d'un Moto-planeur Autonome, JIAF'18
- Intelligent and Adaptive System based on a Non-monotonic Logic for an Autonomous Motor-glider, ICARCV'18

Non-monotonic Reasoning

Resilience 00000000 Practical Case 0000 Conclusion

Perspectives

- Autonomous in electrical energy (solar panel),
- Finding natural sources of energy (ascending winds, ...),
- Other applications (driving behaviour, control systems, ...)

Merci pour votre attention.