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Introduction

• Autonomous motor-glider,

• Different objectives
• take-off,steady-flight,climb,turn,max. time flight, power

management. . .. . .

• Contradiction rules
• emergency,environment,short time to decide. . .

• Resilient system,

• Decision-Making
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Controls

6 Informations : (1)Airspeed, (2)
Horizon Artificial, (3) Altimeter,
(4) Bank turn, (5) Compass, (6)
Variometer

11 Actions :yoke-left,
yoke-neutral1, yoke-right, yoke-up,
yoke-neutral2, yoke-down,
pedal-right, pedal-neutral,
pedal-left, max motor, motor off
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States flight
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Æ

5 / 40



Introduction Non-monotonic Reasoning Resilience Practical Case Conclusion

Traffic Pattern
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Changing objetives

Ø
a

d

b

Ø
a

bb′

→

wind

7 / 40



Introduction Non-monotonic Reasoning Resilience Practical Case Conclusion

Knowledge Representation

Description in classical logic :

• alt(down) ∧ var(stable)→ yoke(pull)

• motor(on) ∧ var(up)→ yoke(push)

• alt(high) ∧ var(stable)→ yoke(push)

• motor(on) ∧ alt(down)→ yoke(pull)

• ¬(yoke(push) ∧ yoke(pull))

Examples
F = {alt(down),motor(on), var(up)}, we infer yoke(pull) and
yoke(push), because of contradictory actions it is a contradiction.
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Example of exceptions

Rule 91.319
“Operate under VFR1, day only, unless otherwise authorized”

in classical logic
VFR ∧ ¬authorized(x)→ ¬piloting(x)
VRF ∧ ¬authorized(x) ∧ ¬day → ¬piloting(x)

Rule 91.7
• “No person may operate an aircraft unless it is in an airworthy

condition”

• “Pilot-In-Command is responsible for determining whether that
aircraft is in condition for safe flight”

1Visual Flight Rules
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Example of contradiction

Rule 91
“The minimum over flight height will never be less than 500 feet”2

This rule could be expressed in FOL, considering that x = airplane:

altitude(x)→ (x ≥ 500)

But when an airplane lands its altitude is less than 500 feet:

land(x)→ (x < 500)

Some more:
emergency(x)→ land(x)

runway obstacle(x)→ ¬land(x)

2This altitude depends of the agglomeration.
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Real scenario
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Non-monotonic Reasoning

• Monotony:
• A ` w , then A

⋃
B ` w

(The validity of the original conclusion is not changed by the addition of premises)

Example

∀y , aircraft(y)→ ¬floating(y)

But we know that some specials aircrafts float.

∀y , aircraft(y) ∧ floatplane(y)→ ¬floating(y) ???
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Non-monotonic Logic

McCarthy(Circumscription), Reiter(Default logic), . . .

• New information can invalide previous conclusions,

• Resolve contradictions,

• Reasoning about knowlegde

• Rational conclusions from partial information

Definition
“. . . we make assumptions about things jumping to the conclusions”
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Default Logic [Reiter]

Definition
A default theory is a pair ∆ = (D,W ), where D is a set of defaults and
W is a set of formulas in FOL.

• A default d is:
A(X ) : B(X )

C(X )

• A(X ),B(X ),C (X ) are well-formed formulas

• X = (x1, x2, x3, . . . , xn) is a vector of free variables(non-quantified).

Intuitively a default means,“if A(X ) is true, and there is no evidence
that B(X ) might be false, then C (X ) can be true”.

With the use of B(X ) we get a reorganization of the conclusions as a
maximal consistent sets of formulas, called Extensions.
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Default Logic [Reiter]

Definition
E is an extension of ∆ iff:

• E =
⋃∞

i=0 Ei with:

• E0 = W and

• for i > 0, Ei+1 = Th(Ei ) ∪ {C (X ) | A(X ):B(X )
C(X ) ∈ D,

A(X ) ∈ Ei ∧ ¬B(X ) 6∈ E}

Property
If every default of D is normal : A(X ):B(X )

B(X )

¬B 6∈ E is replaced by ¬C 6∈ Ei

If W is consistent, there is always extensions and greedy algorithm
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Example

d1 =
((altitude(x) ≥ 500) ∧ roll(x , stable)) : steady flight(x)

steady flight(x)

d2 =
((altitude(x) < 500) ∧ roll(x , stable)) : land(x)

land(x)

d3 =
(land(x) ∧ obstacle) : climb(x)

climb(x)

Assuming the following information :

W = {(alt(x) ≤ 500), roll(x , stable), obstacle}

From ∆ = (D,W ), we calculate the set of extensions.

• E1 = W ∪ land(x)

• E2 = W ∪ climb(x)
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Simulation

W : {glider(pitch stable), glider(roll stable),¬glider(motor on),

glider(low altitude), glider(low airspeed)},
D : {d1, d2, d3, . . . , d50}, (di = A(X ):B(X )

B(X )
)

PointA PointB
h
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Simulation

Solutions Actions
E0 yoke roll(neutral) yoke pitch(neutral) motor(on)←

E1 yoke roll(neutral) yoke pitch(neutral) motor(off )

E2 yoke roll(neutral) yoke(push) motor(off )

E3 yoke pitch(neutral) yoke(pull) motor(on)←

E4 yoke pitch(neutral) yoke(pull) motor(off )

PointA PointB
h

Which extension to choose?
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Decision-Making

• In decision theory, there is a opportunistic model,

• For each default (d) there is a weighting (p),

• Criterias such as legislation, risk, energy, . . .

Definition

∀E ,min {max (ci )− cj}

Where ci is the value of the criteria and cj are the alternatives.
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Decision-Making

For En = {d2, d3, d4}

Score

Very low Low Medium High Very high
0 1 2 3 4

Alternatives C1 C2 C3

d2 1 0 1
d3 4 2 4
d4 3 2 3

Alternatives C1 C2 C3 Decision
d2 3 2 3 3
d3 0 0 0 0
d4 1 0 1 1
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Decision-Making

Alternatives D
E1 d3 d7 d18

E5 d2 d5 d10

E17 d7 d14 d20

The set of solutions :
En = {[xd1, yd1, zd1], [xd2, yd2, zd2], [xd3, yd3, zd3], · · · }

C 1n

xd1
+

C 2n

xd2
+

C 3n

xd3
+ · · · ∈ |C 1n|

C 1n

yd1
+

C 2n

yd2
+

C 3n

yd3
+ · · · ∈ |C 2n|

C 1n

zd1
+

C 2n

zd2
+

C 3n

zd3
+ · · · ∈ |C 3n|

...
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Decision-Making

Each E is associed with a set of ponderations:
En = {|C 1n|, |C 2n|, |C 3n|, · · · },

En−1 = {|C 1n−1|, |C 2n−1|, |C 3n−1|, · · · },
En−2 = {|C 1n−2|, |C 2n−2|, |C 3n−2|, · · · }. . .

Ext-Crit C 1 C 2 C 3 · · ·
En Xn Yn Zn · · ·

En−1 Xn−1 Yn−1 Zn−1 · · ·
En−2 Xn−2 Yn−2 Zn−2 · · ·

...
...

...
...

. . .

Applying “a posteriori” decision-making, we find En.
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Definition

In Ecology:
The property of a system to absorb and anticipate perturbations [Holling].

In Psychology:
An ability to successfully survive with adversity [APA]3.

In Engineering:
It ensures robustness and stability [Goerger, S.].

3American Psychological Association
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Holling’s Definition

The flow of events:
Exploration (β), Reorganization (α), Conservation (δ) and Release (γ).
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Intuitively, the computation of Extensions corresponds to β,
Decision-Making corresponds to α and δ, and interactions with
environment is γ.
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Non-monotonic Model

Theorem
In the world K, there is always a resilience trajectory R : {α, β, γ, δ}.
Where S are situations, O are objectives and A are actions.

∀S ,∀O,∀A ⊆ K ∃ R

α

β

γ

δ

K

S

O

A
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Short and Long term Objectives

Short-term
When an airplane is placed at the start point (Sp), assuming it has the
authorization, and it is possible to take-off, then the plane take-off.

(rest(x) ∧ authorization) : takeoff (x)

takeoff (x)

Long-term
When a plane (starts at some point a) wants to maintain an altitude
greater than 1500 feet and a north direction, to reach to the point b

((alt(x) > 1500) ∧ compass(x , north)) : point(x , b)

point(x , b)
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Dynamics of Non-monotonic Resilience: Tentative
Representation

s

o

a

K Υ

Fonction of choice: Υ(f ) : S ∩ O → O ∩ A
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Discrete Non-monotonic Resilience Model
Definition:
The convergence of an objective G is the sum of the product of the
sub-objectives g and disturbances ζ.

∞⋃
i=0

Gi =
∞⋃

i=0

gi · ζi

R? = {g1, ζ1, g6, ζ2, g3, ζ3, g6, ζ4, g5, ζ5, g4, ζ6, g1, . . .}(left)
RM = {g5, ζ1, g4, ζ2, g3, ζ3, g6, ζ4, g5, ζ5, g4, ζ6, g6, . . .}(right)
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Minsky’s Model

Want

Now

Diff

(a) Minsky’s model

∆ = {D,W ,S}

E = {E1,E2, ...,En} Choice

En = {A,S+}

∆+ = {D,W ,S+}

∆← ∆+

(b) Non-monotonic Resilience
Model
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Practical Case
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Complementary filter

anglei = 0.98 ∗ (anglei−1 + gyro ∗ dt) + 0.02 ∗ (acc)
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Results

Facts Extensions Instanced clauses CPU Lips
7 13 115 95% 114,131
5 13 113 98% 117,176
4 10 112 97% 130,098

Movie
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Conclusion

• Simulation of piloting behaviour,

• We tackled contradictory and incomplete information,

• Resilient model based on default logic,

• Logical approach of resilience, linked with the mathematical notions,

• Non-monotonic model in a embedded microcomputer, cpu running
at 1 GHz ARM11 (single core), 512 Mb of RAM and power
consummation of 0.8 Watts,

• Until now we have 100 defaults. Extensions are computed in
milliseconds.
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Papers

• Autonomous Aerial Vehicle: Based on Non-Monotonic Logic,
VEHITS’17

• Contrôle de Vol d’un Planeur Basé sur une Logique Non-monotone,
APIA’17

• Non-monotonie et Resilience: Application au Pilotage d’un
Moto-planeur Autonome, JIAF’18

• Intelligent and Adaptive System based on a Non-monotonic Logic
for an Autonomous Motor-glider, ICARCV’18
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Perspectives

• Autonomous in electrical energy (solar panel),

• Finding natural sources of energy (ascending winds, . . . ),

• Other applications (driving behaviour, control systems, . . . )

o o1 o2 o3 . . .

PointA PointB
h h’
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Merci pour votre attention.


	Introduction
	Controls
	States flight
	Pattern circuit
	Challenge

	Non-monotonic Reasoning
	Non-monotonic Reasoning
	Non-monotonic Logic
	Default Logic
	Simulation
	Decision-Making

	Resilience
	Resilience
	Short and Long term Objectives
	Dynamics of Non-monotonic Resilient: Tentative Representation
	Discrete Non-monotonic Resilience Model
	Minsky Model

	Practical Case
	Conclusion
	Conclusion


